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Stimulated by the interesting transport experiments on orthorhombic sulfur by Spear and co-
workers, we have carried out a semiempirical molecular-orbital calculation of the S; mole-
cule, the building block of the molecular crystal. The molecular orbitals are constructed
from linear combinations of atomic 3s, 3p orbitals according to the irreducible representa-
tions of the molecular symmetry group. It is found that because of the nonplanar (puckered
ring) geometry of the molecule, the mixing of o and lone-pair hybrids in the molecular orbit-
als is not negligible. The molecular energy-level scheme predicts a set of electronic transi-
‘tions which can be compared, with certain reservations, to the absorption spectrum of sulfur
in hexane. It also predicts two forbidden transitions at 2—3 eV which could be responsible
for the yellow color of the crystal. The sensitivities of the molecular orbitals and energies
with respect to the variation in the parameter of the calculation are discussed. It is con-
cluded that the results are satisfactory for use as the starting point in the studies of the crys-
tal states, which is carried out in the following paper.

I. INTRODUCTION purpose is not the identification of the molecular
spectrum but the interpretation of the different
behavior of electron- and hole-transport param-
eters in orthorhombic sulfur crystals.

The electric and optical properties of ortho-
rhombic sulfur have recently been studied in detail
by Spear and co-workers. ! Of particular interest
is the different behavior of the electron and the
hole-transport parameters in this molecular crys-
tal. According to them, an excess electron propa-
gates by an intermolecular-hopping process while
a hole moves through the lattice in a narrow polar-
on band. This is qualitatively accounted for by
noting that the electron band is formed from the
o* orbitals while the hole band is generated by the
more overlapping 7* (lone~pair) orbitals.

In contrast to the extensive theoretical studies
on the electronic states of organic molecular crys-
tals, 2 there is no such work on orthorhombic sul-
fur, nor on the Sz molecule, which is the building
block of the molecular crystal, except for the un-
published work of Gibbons. Gibbons has analyzed
the molecular orbitals (MO) in terms of the ¢ and
7 orbitals.® He has neglected the mixing between
these two types of orbitals which, as shown in
Sec. VII, is not negligible because the molecule
is not planar. No effect of molecular symmetry
was considered in his analysis. The lack of the-
oretical work on the Sz molecule is probably due
to the difficulty in obtaining a molecular electron-
ic spectrum. Sulfur dissolves considerably only
in CS, whose absorption masks those of the solute. L
To the best of the author’s knowledge, only a

b d ¢ 1 Ived t f sulfur FIG. 1. Structure of Sy molecule. Top: viewed per-
road, not very well-resolved spectrum O suliu pendicular to the molecular planes. Bottom: viewed

. : 4

in hexane has been published. ) m parallel to the molecular planes. The atomic coordi-
In this paper we carry out a semiempirical cal- nates (¢;, m;, &;) defined in Sec. II and the molecular

culation® of the MO of the S; molecule. Our major coordinates (x, y, z) defined in Sec. III are also shown.
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The structure of the S; molecule is a puckered
ring (Fig. 1).® Each atom has two nearest neigh-
bors at a distance of 2.048 A and an average bond
angle of 107.9°. The odd-numbered atoms are
located at the corners of a square, 3.312 A on one
side. The even-numbered atoms are located at
the corners of another square of the same size
but rotated by 45° with respect to the former.

The two planes of the squares are parallel and are
separated by 0. 991 A.

II. HYBRIDIZATION OF ATOMIC ORBITALS

The valence-electron orbitals 3s and 3p are hy-
bridized into two directed-bond (o) hybrids a and
b pointing toward the two nearest neighbors, re-
spectively, and two equivalent lone-pair hybrids
c and d:

a=as+(1-a®2p, | (1)
b=as+(1-a®)2p, | (2)
c=(0.5-a®)%s5+(0.5+a®%p, | (3)
d=(0.5- a®'%s5+(0.5+a®)?p, , (4)

where p, and p, are linear combinations of p,, p,,
and p, pointing towards the two nearest neighbors,
respectively, and p. and p, are similar combina-
tions which can be determined by orthonormality
requirements. The hybridization constant «a is
determined from the bond angle 6 and the orthog-
onality of @ and b as

o =[~cos/(1-cosh)’? | (5)

which has the value of 0. 4849 with the 6 valuegiven
above.

We shall define a set of right-handed coordinate
systems (£;,m;,¢;) at atom ¢ such that the £; axis
lies on the direction connecting the center of the
square and the atom, pointing outward; and the ¢;
axis is perpendicular to the plane of the square and
pointing away from the other square (Fig. 1). In
this coordinate system (say, of atom 1), the two
nearest neighbors (2 and 8) are located at [- 3L
X(V2 -1), +3L, - H], where L isthe side lengthof
the square and H is the separation between the
two squares. Thus the combinations p, and p, in
Egs. (1) and (2) can be written as

Pa, =B it BeMi+ B3ty (8)
with By=-L(V2 -1)/2B , ("
Bz=L/ZB ’ (8)
Bs=—H/B , (9)

where B is the bond length.
Now if the p-orbital combinations for the lone
pairs, Egs. (3) and (4), are written as

P=nEi+vani+ysts (10)
then, from the orthogonality relations, we have
@(0.5- @®)2+[(1~ @®) (0. 5+ a)]/2

X(B171£B2V2+Bsvs) =0 , (11)

which immediately gives

v2=0, (12)

By ¥y +Bavs=— [(0.5-0?)/(1- 0?) (0.5 + az)]l/z.(w)

Combining with the normalization requirement,
Yi+7=1 . (14)

Equation (13) gives two sets of solutions for v; and

V3.
Using the geometrical data given above, and

Egs. (5)-(14), the hybridization of S atoms in Sg
molecules are found to be

a,=0.484981—0.2929§¢+0.7071m—0.4232§1 N

(15)
b;=0.4849s,~0.2929&,~0.7071n; - 0.4232¢; ,
(16)
c;=0.5147s,;+0.8574¢&; | (17)
d;=0.5147s;~0.3055£,+0.8011¢; . (18)

The MO’s are formed from linear combinations of
these hybrids of each atom according to the molec-
ular symmetry.

IIl. MOLECULAR SYMMETRY AND LINEAR
COMBINATIONS OF HYBRID ORBITALS

The symmetry group of the ring molecule is
Dy;. The 16 symmetry operations are: two eight-
fold rotation reflections (Sy), two fourfold rota-
tions (Sg)?, two 135° rotation reflections (Sg)®, one
twofold rotation (S5)%, four twofold rotations (C,,)
perpendicular to the previous diad axis, four mir-
ror planes (0,), and the identity. There are four
one-dimensional and three two-dimensional irre-
ducible representations. The character table is
given in Herzberg’s book. "

We shall define molecular coordinates (x, y, z)
with the origin at the center of molecule (Fig. 1).
The z axis coincides with the rotation-reflection
axis, and the x axis coincides with one of the two-
fold axes (C,,) bisecting the 1-8 bond. The other
three C,, axes bisect the 1-2, 2-3, and 3-4 bonds.
The mirror planes are those perpendicular to the
molecular plane (x-y plane), including the z axis,
and passing through the atoms 1, 2, 3, and 4, re-
spectively.

The hybrids a; and b; (i =1-8) transform among
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themselves under the symmetry operations, where- IV. OVERLAP AND GROUP OVERLAP

as the hybrids c; and d; transform into the same INTEGRALS

type of hybrids only. Linear combinations of hy-

brid orbitals (LCHO) which transform according For the normalization of the LCHO’s of Table I
to the irreducible representations of the symmetry and the ultimate determination of the MO’s, we need
group can be found by the well-known technique. 8 to calculate the overlap integrals between two hy-
The results are given in Table I. brid orbitals centered at different atoms, and the

TABLE I. Linear combinations of hybrid orbitals according to the irreducible representations of D,. The ¥ is
over the index i from 1 to 8. The normalization factor N, Eq. (21), is given in the last column.

Ir. Rep. . LCHO N
A, ¢1=% (a; +b;) 0.1866
$2=Z¢c; 0.3191
$p3=Zd; 0.3760
Ay ¢1=% (1) * (g - by 0.3701
By ¢1=Z (a; - by) 0.2247
By $1=Z (= 1)** ! (q; +by) 0.3625
$y=3 (-1)i*1g, 0.3859
$s=3 (-1)i*1g, 0.3068
Ey(x ®1=V2 (a;— a;— a5 +ay) 0.2520
+(by+by —bg— by— bs—bg+by+bg
9=V2 (ay— a3 — ag +ay) 0.2277
+(b1-"b2+b3—b4—b5+b6—b7+b8)
¢3:(\/-2+1) (01_04—05"'6‘8) +(6'2"'C3—‘Cs+6‘7) 0.1794
¢4=W2+1) (dy—dy—ds+dg) + (dy— dy ~ dg +dy) 0.2084
Eyy) d1=V2 (ay +ag— ag—ay) 0.2520
+(b1+b2+b3+b4"b5—b6—b7—b8)
¢2=V2 (a; +a,— a5~ ag) 0.2277
+(—b1+b2+b3_b4+b5"‘b6"‘b7+bg) ‘
d3=(ci+ecy—c5—cg +W2+1) (cy+e3~ceg—cy) 0.1794
¢4=(d1+d4—d5'-d8)+(\/-2+1) (d2+d3'-d6—d7) 0.2084
Eyy2_ 42 b1=a1—ay—ag+tay+a;—ag—a;+ag 0.5507
¢2=b1—b2—b3+b4+b5*’b6—b7+bg 0.2791
Pg=cy—cy—cgtcygtcs—cg—CrtcCy 0.3596
¢4=d1"d2"d3+d4+d5"dg"'d7+d8 0.3740
Enzy) G1=by+by— by~ by+bs+bg—by— by 0.5507
Po=aytay—az—aytagtag—ar—ag 0.2791
$P3=citcy—c3—cytestcg—cr—Cg 0.3596
¢4:d1+d2"d3“d4+d5+d6—d7"d8 0.3740
E3ye) ¢1=v2(ay— ay—as+ay 0.2572
+(= bI—b2+b3+b4+b5+b6"‘b7—b8)
$9=V2 (ay — a5— ag+ay) 0.2688
+(“'b1+b2"b3+b4+b5—b6+b7—bs)
¢3=(\/-2—1)(6‘1‘—04'-054'03)+(—02+6‘3+06-C’7) 0.4973
d=W2-1) (di—d4—d5+da)‘+(—d2+d3+ds—d7) 0.4295
ES(XI) ¢1=‘/‘2 (- as = a3+a6+a7) 0.2572
+(b1+b2+b3+b4"b5—bs-b7—b3)
¢2=w/'2(—a1—a4+a5+a3) 0.2688
+(—b1+b2+b3"'b4+b5—b6'—b7+bs)
¢3=(W2—1) (—cy—c3+cgtey) 0.4973
+(L‘1+C4"C5-‘Cg)
¢4=W2=1) (~dy—dy+dg+dy) 0.4295

+(dy+dy— ds— dy)
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group overlap integrals between two LCHO’s of the
same irreducible representations.
A LCHO is represented by

Ge=Ne 2 ifuihi (19)

where &; represents a hybrid orbital, f,; is a con-
stant coefficient, and N, is the normalization fac-
tor. The latter is related to the overlap integrals,

Siy=Chilhy) (20)
by Nizizjfkifkjsijzl . (21)

Since the hybrid orbital #; is given in terms of
atomic orbitals U, by

hi=ZuaiuUu s (22)
the overlap integral S;; can be written as
S{j=Zu Zvaiuajvsuv ’ (23)

where the coefficients «;, are those given in Eqgs.
(15)-(18), and the overlap integrals S,, between
two atomic orbitals can be calculated by the meth-
od of Mulliken, Rieke, Orloff, and Orloff.? We

TABLE II. Overlap integrals.

Basic overlap integrals

Distance (4) (3s13s) (3sl®%0) (3poi3po) (3pri3pm)
2. 048 0.1968 0.3230 0.3147 0.1897
3.312 0.0262 0.0742 0.1176 0.0350

Overlap integrals (S,,) between atomic orbitals centered on
atoms 1 and 2. The matrix is symmetric.

S2 & Ny 1
st 0.1968 —0.1082 0.2612 -0.1563
£ 0.1907  —0.0024 0.0817
n 0.1955 -0.1973
£y —-0.0716

Overlap integrals (S,,) between atomic orbitals centered on
atoms 1 and 3. The matrix is symmetric.

S3 4‘;3 N3 53

Sy 0.0262 —0.0525 -0.05625 0.0

& 0.0763 0.0413 0.0

M 0.0763 0.0
0.0350

&y
Overlap integrals between hybrid orbitals centered on atoms
1 and 2, Sy5. The matrix is symmetric.

a, by cy dy
ay 0.5609 0.067 2 0.0713 0.0713
by —0.0355 -0.1169 0.1037
cy 0.0969 ~0.0363
d, ~0.1109

Overlap integrals between hybrid orbitals centered on atoms
1and 3, Sy3.

as b3 C3 d3
a, ~0.0043 0.1252 ~0.0324 0.0452
b, 0.0189 -0.0043 ~0.0206 -0.0108
¢y —-0.0206 —0.0324 —-0.0167 -0.0281
d, ~-0.0108 0.0452 -0.0281 0.0531

INAN CHEN 2

TABLE III. Overlap integral matrix S;; (32x32) ex-
pressed in terms of the six 4X4 matrices 0, I, Sy, Si3,
Ry; and Ry3. The matrix is symmetric with respect to
the diagonal.

Atoms 1 2 3 4 5 6 7 8
1 I Sip S35 0 Y 0 Ry3 Ry
2 I Ry Ry 0 0 0  Sg
3 I Sy 513 0 0 0
4 I Ry Ry 0 0
5 I Sipg Si3 O
6 I Ry, Ryg
7 I Sy
8 I

have calculated the overlap integrals using the
analytic Hartree-Fock wave functions of Watson
and Freeman.!® The four basic overlap integrals
for the nearest-neighbor and the next-nearest-
neighbor distances are given in Table II. The
overlap integral S,, is then obtained from these
basic integrals by decomposing each orbital U,
and U, into the o and 7 components. The matrix
(S,,) is, in fact, 32x32 in dimension. However,
because of the symmetry, it breaks down into

4 x4 matrices of the following types, according to
the relations between the two atoms to which the
two atomic orbitals U, and U, belong: (i) the same
atom - in this case, the 4 X4 matrix is a unit ma-
trix I; (ii) nearest neighbors; (iii) next nearest
neighbors; (iv) different atoms separated by more
than the next-nearest-neighbor distance — in this
case, the overlap integrals are so small compared
to those of the former three cases that we approxi-
mate these matrices by 4 X4 zero matrices 0. A
matrix of type (ii) (between atoms 1 and 2) and one
of type (iii) (between atoms 1 and 3) are given in
Table II.

The matrix (S;;) can similarly be decomposed
into 4 X4 matrices. The diagonal blocks of 4 x4
are again unit matrices. Because of the molecu-
lar symmetry there are only four different non-
zero 4 X4 matrices. Two of them, which we shall
denote by Sy, and S;3, are obtained from the two
matrices (S,,), given in Table II according to the
transformation Eq. (23). The other two, which
we shall denote by Ry, and R,;, are obtained from
S, and S;; by interchanging the indexes 1 and 2
[which correspond to the hybrids a and b of Eqs.
(15) and (16), respectively]. The 32X32 matrix
(S;;) can now be represented by the six 4 X4 ma-
trices I, S;5, Si3, Ryz, Ry3, and 0 as shown in
Table III. Because of the symmetry of the ma-
trix (S;;) with respect to the diagonal, only the
upper half is shown.

Now the normalization factor N, can be calcu-
lated from Eq. (21). The results are given in the
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last column of Table I.
The group overlap G, between two LCHO’s ¢,
and ¢, can be written in terms of S;; and N as

Gu={ balds) =NszZj Jeif 1584 - (24)

The group overlaps between LCHO’s, belonging to
different irreducible representations, vanish by
group-theoretical arguments. In Table IV, we
present the group overlap matrices (G,,;) for each
irreducible representation in which there are more
than one LCHO.

V. SECULAR EQUATION

A MO ¥,, is represented as a linear combination
of LCHO’s ¢,,

Ym=21Cop b - (25)

The coefficients C,,, are determined by the solu-
tion of the secular equations

2.1 Hy~GHE,)Cp=0 for each k, (26)

where E,, is the energy of the MO ¢,,, G,; is the
group overlap matrix element (Table IV), and H,,;
is the Hamiltonian matrix element between ¢, and
¢:.

Since there is no nonvanishing matrix elements
of G and H between two LCHO’s ¢, and ¢,, which
belong to different irreducible representations,
the secular equation [Eq. (26)] can be solved
separately for each irreducible representation,

The Hamiltonian matrix element H,; can be ex-
panded in terms of matrix elements between two
hybrid orbitals,

TABLE IV. Group overlap matrix elements between
the LCHO’s of Table I. The matrices are symmetric.

Ir. Rep. Group overlap matrices
A 1.0 -0.0939 0.2351
1.0 -0.1235
1.0
B, 1.0 -0.0165 -0.2503
1.0 0.0155
1.0
E 1.0 0.5838 -0.1018 0.1578
1.0 0.1204 0.1094
1.0 -0.0524
1.0
E, 1.0 -0.1772 -0.2143 -0.0032
1.0 0.1936 ~0.0558
1.0 0.060 4
1.0
E,; 1.0 0.5373 -0.1905 0.0346
1.0 -0.1395 0.2044
1.0 0.0513
1.0

TABLE V. Hamiltonian matrix elements between
LCHO’s of Table I. The matrices are symmetric.

Ir. Rep. Hamiltonian matrix elements in eV
Ay -17.29 2.48 - 6.26
—16.43 3.41
-12.51
A,y - 7.04
B -13.23

B, - 7.47 0.68 6.62
-11.67 - 0.42
-17.20

E —13.64 —-11.98 2,64 - 4.15

-15.92 - 3.19 - 2.99

—15.58 1.45

-11.,73

E, - 4,69 4,61 5.58 0.18

—16.26 - 5.16 1.46

-13.567 - 1.67

—-12.47

E, —-12.93 -10.18 5.07 - 0.94

-11.89 3.63 — 5.44

-12.04 - 1.42

~15.75

sz=NszZiijkifszif : (27)

In the semiempirical MO calculations, ® the di-
agonal elements H;; are approximated by the va-
lence-state ionization energies (VSIE) of the or-
bital Z, and the off-diagonal elements H;; (i #j) are
approximated by

Hlj::%FSij(HH'*'Hjj) . (28)

Several different values (between 1 and 2) for the
multiplicative factor F have been suggested by
various authors. In this calculation we choose
the value suggested by Cusachs!?

F=2-1S;| . (29)

We shall discuss the dependence of thefinal results
on this factor in Sec. VII

Ballhausen and Gray'? have given the following
values for the VSIE of sulfur 3s and 3p orbitals:

Eg,=—167%10° cm™=-20.70 eV , (30)
Egp=—94%10° cm™=-11.65 eV . (31)

Thus, from Eqs. (1)-(4) and Egs. (15)-(18), the
VSIE of the o hybrids @ and b and the lone pairs
¢ and d are, respectively,

Haa=be=a2Eas+(1_ az)E3p=—13.78 eV N (32)
H,o=Hy;=(0.5= %) Eg,+(0.5+ a?) E;,=—14.05 eV .
(33)

The matrix (H,,) calculated from Eqs. (27)-(33)
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TABLE VI. MO energies (in eV) and MO coefficients of S3. The MO’s are indexed in order of increasing energy.
Ir. Rep. MO energy MO coefficients MO index
A -18.53 -0.728 0.423 —-0.310 1
-15.78 +0.544 0.891 0.026 11
-10.11 0.487 -0.220 - 0,987 22
A, ~ 7.04 1 25
B, -13.23 1 16
B, ~17.68 0.201 -0.036 ~0.929 2
-11.68 -0.049 0.997 -~0.076 17
- 5,08 1.012 0.068 0.445 26
E, —-17.45 0.352 0.680 0.179 0.198 5, 6
- 16.26 -0.325 0.130 0.878 -0.194 9, 10
—10.64 -0.129 —-0.283 0.243 0.967 20, 21
- 3.98 1.167 -1.019 0.450 -0.123 27, 28
E, -17.52 -0.151 0.779 0.417 -0.021 3, 4
-13.45 -0.084 -0.365 0.537 0.748 14, 15
~10.69 -0.116 -0.543 0.688 -0.670 18, 19
- 2.02 1.013 0.173 0.383 -0.018 31, 32
E, -16.81 0.233 0.384 ~0.109 0.741 7, 8
-15.29 -0.504 ~0.155 0.510 0.531 12, 13
- 9,22 0.476 0.257 0.879 -0.312 23, 24
- 3.21 0.953 -1.116 0.028 0.360 29, 30
are given in Table V. The solutions of the secular A R B B2 B B2 Es
equation [Eq. (26)], i.e., the MO energies E,, and 3 32
the MO coefficients C,,, , are given in Table VI, -2
29,30

The MO’s are indexed in order of increasing ener-

gy. Since there are 6 X8 =48 valence electrons in
a S; molecule, the lower 24 MO’s are occupied.
The energy-level diagram is shown in Fig. 2.

VI. ELECTRONIC TRANSITIONS

The three-dimensional vector representation
reduces into the irreducible representations B, (z)
and E, (x,y) in the point group D,;. The selection
rule for electric dipole transitions derived from
the character table is shown in Table VII. The
I'and 1 signs indicate that the transitions between
the two levels are allowed for the polarization,
parallel and perpendicular, respectively, to the

TABLE VII. Selection rule for electronic dipole tran-
sitions in Sg. The Il and 1 signs denote allowed transi-
tions with polarization parallel and perpendicular, re-
spectively, to the molecular z axis (Fig. 1); 0 denotes
forbidden transitions.

A, A B B, E E E

A0 0 0 I 1 0 0
A, 0 0 1 0 1 0 0
By 0 I 0 0 0 0 1
By, I 0 0 0 0 0 1
E 1 1 0 0 0 1 I
E, 0 0 0 0 1 1 1
E, 0 0 1 1 I 1 0

20 /21
18,19
17
-12— _
16 14,15
~14}— —
12,13
"
-6l 9,10 —
7,8
5,6
s 3,4
-18|— _

FIG. 2. MO energy levels of Sg. Levels of the same
irreducible representation (which is given in the top line)
are shown in the same column. MO indexes are given
with the levels. Doubly degenerate levels carry two in-
dexes. Several allowed electronic transitions with their
‘polarizations are shown by arrows.
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molecular z axis (which is perpendicular to the
molecular planes). Several lower-energy transi-
tions with their polarizations are also shown in
Fig. 2.

As mentioned in the Introduction, there are no
detailed spectroscopic data to compare with this
prediction. From the spectrum published by Baer
and Carmack, * it is possible to resolve three peaks
at 4.4, 4.8, and 5.4 eV. These three peaks could
be assigned to the following transitions, respec-
tively:

E, (MO20,21)~A,(25), AE(calc)=3.6 eV ,
E; (MO 23, 24)~ B, (26), AE(calc)=4.1eV ,
A, (MO22)~B,(26), AE(calc)=5.0¢eV .

There are no polarization data to support the as-
signment. The differences between the observed
transition energies and AE(calc) could be attrib-
uted to the electron correlation in thefinal states.
We shall not pursue this matter further here.

A more important result in this analysis is that
the two lowest-energy transitions

E, (MO23,24)~A, (25), AE(cale)=2.2 eV ,
A; (MO22)~A4, (25), AE(calc)=3.1eV

are symmetry forbidden. These transitions, how-
ever, become allowed when S3molecules are packed
into orthorhombic crystals or when changes in mo-
lecular vibrational states accompany the transi-
tions. This could be the origin of the yellow color
of sulfur crystals and the long tail extending below
3 eV in the solution spectra of sulfur. *

In the following paper*?® we also present an argu-
ment that one of these transitions A, - A, may be
responsible for the nonphotoconducting absorption.

VII. DISCUSSION

First, we like to point out that there is consid-
erable overlap between the o hybrids and the lone-
pair hybrids, as can be seen from Table II (S,, and
Sy3). In fact the overlap between the hybrids » and
¢ (or d) on nearest-neighbor atoms is as large as
the overlap between two ¢ (or d) hybrids. Conse-
quently, in most MO’s, all four kinds of hybrids
coexist. For example, in the highest occupied
MO (23 and 24), the fraction of ¢ hybrids is about
30% (see Table VI), whereasin Gibbons and Spear’s
model, 13 this MO consists of only lone-pair hy-
brids. The only exceptions are MO 16 (B,) and
MO 25 (4,). Since the lone-pair hybrids do not
form combinations transforming as B, or A,, these
two MO’s consist only of o hybrids. The MO 25
(A,) is the lowest empty orbital which is expected
to form the excess electron band in orthorhombic

_sulfur crystals. Since the o hybrids are more
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concentrated within the molecule, the intermo-
lecular overlap between two such orbitals is ex-
pected to be small. This argument has been used
by Spear and co-workers! to explain the experimen-
tal findings that an excess electron moves by a
hopping process, while an excess hole propagates
in a polaron band in orthorhombic sulfur.

An examination of the energy-level diagram
(Fig. 2) shows that the two lowest empty orbitals,
MO 25 and MO 26, are separated by about 2 eV,
whereas in the upper occupied orbitals, there are
seven MO’s (MO 18-MO 24) within the range of
2 eV. The close lying of these levels may allow
the energy bands generated from these MO’s to
overlap, resulting in a wider band for the hole
transport.

Perhaps the largest uncertainty in this calcula-
tion is the choice of the multiplication factor F in
Eq. (28). The choice of Eq. (29) corresponds to
using a smaller value of F for orbitals with larger
overlaps. This is consistent with the practice® of
using a smaller value (1.6) for o bonds and alarger
value (1. 87) for 7 bonds.

Calculations using a constantvaluefor F (vary-
ing from 1. 25 to 2. 0) show that the resulting MO
energies vary quite drastically. For example, the
separation between the highest occupied and the
lowest empty MO levels varies from 3.2 to 12. 3
eV. It seems that the energy levels obtained with
Eq. (29) are in the best accord with the optical
data, * although there could be uncertainties as
large as +0.5 eV.

On the other hand, the above-mentioned fact
(that there are seven occupied MO levels within
the energy range equal to the separation between
the two lowest empty levels) always holds true,
although the energy range varies from 0.4 to 1.7
eV.

It is also found from these calculations that the
MO coefficients, C,; are very weakly dependent
on the value of F. All coefficients vary less than
10% (many of them vary less than 3%) in the range
1.25<F <2.0. The differences between the coef-
ficients obtained by using Eq. (29), and those ob-
tained by using a constant F, are slightly larger,
but very seldom exceed 0. 1 in absolute value.
Since in the calculations of intermolecular inte-
grals (see following paper®?) the larger coeffi-
cients dominate the results, an absolute error of
0.1 in quantities of the order of 1 is tolerable in
comparison to other approximations made in the
calculation.

Thus we conclude that the MO’s we obtained in
this calculation (Table VI) are sufficiently good to
use as a basis for describing the electronic states
of orthorhombic sulfur crystals (see the following

paper).
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In order to interpret the difference of four orders of magnitude in the electron and the hole
drift mobilities in orthorhombic sulfur, the intermolecular electronic-interaction energies for
an excess electron and an excess hole are computed with the molecular orbitals obtained in
the preceding paper. The excess-carrier energy bands are obtained by summing these ener-
gy integrals according to the symmetry characteristics of the crystal structure. Contrary
to what Spear and co-workers have expected, the electronic contributions to the widths of an
excess electron band and an excess hole band are found to be of the same order of magnitude
and hence do not account for the large difference in the mobilities. The changes in the elec-
tronic charge distributions when an electron is added to or removed from a neutral molecule
are used to estimate the relative values of molecular deformations and the polaron binding
energies E,. It is found that E, associated with an excess electron is almost an order of
magnitude larger than that associated with an excess hole. Holstein and Siebrand’s theory is
then used to show that this difference in electron-molecular vibration couplings is the major
effect leading to the large difference in the electron and the hole mobilities. The same argu-
ment is used to explain the large difference in the charge~carrier mobilities of metal-free
phthalocyanine and copper phthalocyanine. The excitation-transfer matrix elements are for=
mulated in terms of molecular-orbital coefficients. The matrix elements for one of the ex-
cited states are found to be always almost zero due to the molecular symmetry. This is in-
terpreted as the “localized excited state” which is responsible for the nonphotoconducting
absorption observed in orthorhombic sulfur and vitreous selenium.

1. INTRODUCTION

In the preceding paper, ! we have already men-
tioned the experimental works of Spear and co-
workers? on the electric and optical properties of
orthorhombic sulfur. The crystal of orthorhombic
sulfur consists of Sg molecules held together by
van der Waals forces. It is therefore possible to
study the electronic states of the crystal from

those of an isolated Sg molecule by treating the
intermolecular interaction as a perturbation,
With 16 molecules in a unit cell, the crystal
structure of orthorhombic sulfur is considerably
more complicated than those of well-studied or-
ganic molecular crystals such as naphthalene or
anthracene. The crystal structure and the space
group are analyzed in detail, and the symmetry-
adapted—-crystal wave functions are derived in Sec.



